Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Microbiol Spectr ; 11(6): e0261523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819129

RESUMO

IMPORTANCE: It is well recognized that only Vibrio cholerae O1 causes cholera pandemics. However, not all O1 strains cause pandemic-level disease. In this study, we analyzed non-pandemic O1 V. cholerae isolates from the 1960s to the 1990s from China and found that they fell into three lineages, one of which shared the most recent common ancestor with pandemic O1 strains. Each of these non-pandemic O1 lineages has unique properties that contribute to their capacity to cause cholera. The findings of this study enhanced our understanding of the emergence and evolution of both pandemic and non-pandemic O1 V. cholerae.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Pandemias , Vibrio cholerae O1/genética , Genômica , Genoma Bacteriano
2.
Nat Microbiol ; 8(10): 1787-1798, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37770747

RESUMO

Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Vibrio cholerae O1/genética , Iêmen/epidemiologia , Plasmídeos/genética , Genômica
3.
Emerg Infect Dis ; 29(9): 1864-1867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487168

RESUMO

A Vibrio cholerae O1 outbreak emerged in Haiti in October 2022 after years of cholera absence. In samples from a 2021 serosurvey, we found lower circulating antibodies against V. cholerae lipopolysaccharide in children <5 years of age and no vibriocidal antibodies, suggesting high susceptibility to cholera, especially among young children.


Assuntos
Cólera , Vibrio cholerae O1 , Criança , Humanos , Pré-Escolar , Cólera/epidemiologia , Haiti/epidemiologia , Anticorpos Antibacterianos , Vibrio cholerae O1/genética , Surtos de Doenças
4.
Emerg Infect Dis ; 29(8): 1687-1690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352549

RESUMO

Since February 2022, Malawi has experienced a cholera outbreak of >54,000 cases. We investigated 6 cases in South Africa and found that isolates linked to the outbreak were Vibrio cholerae O1 serotype Ogawa from seventh pandemic El Tor sublineage AFR15, indicating a new introduction of cholera into Africa from south Asia.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , África do Sul/epidemiologia , Vibrio cholerae O1/genética , Ásia Meridional , Malaui , Surtos de Doenças
5.
Microbiol Spectr ; 11(3): e0414022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125926

RESUMO

Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007-2010 and 2015-2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015-2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007-2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007-2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015-2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.


Assuntos
Cólera , Epidemias , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Cólera/epidemiologia , Cólera/microbiologia , Antibacterianos/farmacologia , Quênia/epidemiologia , Ácido Nalidíxico , Surtos de Doenças
6.
BMC Microbiol ; 23(1): 75, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927368

RESUMO

BACKGROUND: The present study reports on the comprehensive analysis of Vibrio cholerae O1 and non-O1/non-O139 serogroups isolated from environmental water sources during cholera outbreaks, epidemics and surveillance studies between years 2007 to 2019 from different districts of Odisha, India. METHODS: A total of 85 stocked cultures of V. cholerae O1 and non-O1/non-O139 strains were analyzed for different ctxB genotypes, toxic genes, antibiogram profiles through PCR assays and pulsotyped by pulsed-field gel electrophoresis (PFGE). RESULTS: From all V. cholerae strains tested, 51 isolates were O1 Ogawa and the rest 34 strains were non-O1/non-O139. All the V. cholerae O1 strains were altered El Tor variants carrying ctxB1, ctxB3 and ctxB7 genotypes. However, only ctxB1 genotypes were present in V. cholerae non-O1/non-O139. Though non-O1/non-O139 strains were negative by O1 antisera, 20% strains were positive for rfbO1 gene by PCR assay. All the V. cholerae isolates possessed a variety of virulence genes including ace, ctxAB, toxR, zot, hlyA which were in higher percentage in the case of V. cholerae O1. The Vibrio cholerae O1 and non-O1-/non-O139 strains showed multiple antibiotic resistances in 2007 and 2012. The PCR detection of four resistance associated genes (strB, dfrA1, sulll, SXT) confirmed higher prevalence in V. cholerae non-O1/non-O139 strains. The PFGE analysis revealed 3 pulsotypes having 93% similarity among V. cholerae O1 strains. CONCLUSION: This study indicates the changing epidemiology, antibiogram patterns and continuous genetic variation in environmental V. cholerae strains of Odisha over the years. So continuous surveillance is necessary to understand the changing patterns of V. cholerae different serogroups isolated from stool and water samples from Odisha.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Virulência/genética , Sorogrupo , Água , Cólera/epidemiologia , Vibrio cholerae O1/genética , Testes de Sensibilidade Microbiana , Genótipo , Índia/epidemiologia
8.
J Infect Dev Ctries ; 17(1): 73-79, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36795928

RESUMO

INTRODUCTION: Cholera is a significant threat causing outbreaks/epidemics with high morbidity and mortality in coastal and tribal districts of Odisha. A sequential cholera outbreak reported from four places in Mayurbhanj district of Odisha during June to July 2009 was investigated. METHODOLOGY: Rectal swabs from diarrhea patients were analyzed for the identification, antibiogram profiles and detection of ctxB genotypes by double mismatch amplification mutation (DMAMA) polymerase chain reaction (PCR) assays and sequenced. The different virulent and drug resistant genes were detected by multiplex PCR assays. The clonality analysis on selected strains was done by pulse field gel electrophoresis (PFGE). RESULTS: Bacteriological analysis of rectal swabs revealed the presence of V. cholerae O1 Ogawa biotype El Tor which were resistant to co-trimoxazole, chloramphenicol, streptomycin, ampicillin, nalidixic acid, erythromycin, furazolidone and polymyxin B. DMAMA-PCR assay revealed that the cholera outbreak in Mayurbhanj district was due to both ctxB1 and ctxB7 alleles of V. cholerae O1 El Tor strains. All the V. cholerae O1 strains were positive for all virulence genes. The multiplex PCR assay on V. cholerae O1 strains revealed the presence of antibiotic resistance genes like dfrA1 (100%), intSXT (100%), sulII (62.5%) and StrB (62.5%). PFGE results on V. cholerae O1 strains exhibited two different pulsotypes with 92% similarity. CONCLUSIONS: This outbreak was a transition phase where both ctxB genotypes were prevalent after which the ctxB7 genotype gradually became dominant in Odisha. Therefore, close monitoring and continuous surveillance on diarrheal disorders is essential to prevent the future diarrheal outbreaks in this region.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Cólera/epidemiologia , Alelos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Surtos de Doenças , Genótipo , Diarreia/tratamento farmacológico , Índia/epidemiologia , Toxina da Cólera/genética
9.
Microbiol Spectr ; 11(1): e0361722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533913

RESUMO

Vibrio cholerae O1 is the causative agent of cholera, a severe diarrheal disease which can cause death if left untreated. In this study, a collection of clinical and environmental V. cholerae serogroup O1 isolates from Australia (1977 to 1987) (from local cases and cases acquired through international travel) and publicly available international isolates were characterized for genotypic features (virulence genes, mobile genetic elements [MGEs], and antimicrobial resistance gene profiles). Whole-genome sequencing (WGS) was used to investigate and compare the genetic relatedness between the 44 Australian and nine travel-associated isolates and the 60 publicly available international V. cholerae sequences representing pre-seventh-pandemic (pre-7PET) isolates and different waves of 7PET isolates. In this study, 36 (81%) Australian clinical and aquatic isolates harbored the cholera toxin-producing genes located in the CTX bacteriophage region. All the Australian environmental and clinical isolates lacked the seventh-pandemic virulence-associated genomic islands (VSP-I and -II). In silico multilocus sequence typing (MLST) classified all nine internationally acquired isolates as sequence type 69 (ST69), 36 clinical and aquatic isolates as ST70, and eight isolates from Australia as ST71. Most of the nontoxigenic clinical and aquatic isolates of ST71 had diverse genetic variations compared to ST70 Australian strains. The antimicrobial resistance-associated genes gyrA, parC, and parE had no mutations in all the environmental and clinical isolates from Australia. The SXT genetic element and class 1 integron gene sequences were not detected in Australian strains. Moreover, in this study, a Bayesian evolutionary study suggests that two distinct lineages of ST71 (new set of strains) and ST70 strains were prevalent around similar times in Australia, in ~1973 and 1969. IMPORTANCE Australia has its own indigenous V. cholerae strains, both toxigenic and nontoxigenic, that are associated with disease. Exotic strains are also detected in Australian patients returning from overseas travel. The clinical and aquatic V. cholerae O1 toxin gene-positive isolates from Australia responsible for cases in 1977 to 1987 were linked to acquisition from Queensland waterways but until now had not been characterized genetically. It is important to determine the genetic relatedness of Australian strains to international strains to assist in understanding their origin. This is the first extensive study to provide sequences and genomic analysis focused on toxigenic O1 V. cholerae clinical and environmental strains from Australia and its possible evolutionary relationship with other publicly available pre-7PET and 7PET V. cholerae strains. It is important to understand the population genetics of Australian V. cholerae from a public health perspective to assist in devising control measures and management plans for reducing V. cholerae exposure in Australia, given previous Australian disease clusters.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Tipagem de Sequências Multilocus , Teorema de Bayes , Viagem , Austrália/epidemiologia , Cólera/epidemiologia , Genômica
10.
Microbiol Spectr ; 11(1): e0362422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36537825

RESUMO

Toxigenic Vibrio cholerae O1 serotype Ogawa was introduced involuntarily into Haiti in October 2010, and virtually all of the clinical strains isolated during the first 5 years of the epidemic were Ogawa. Inaba strains were identified intermittently prior to 2015, with diverse mutations resulting in a common phenotype. In 2015, the percentage of clinical infections due to the Inaba serotype began to rapidly increase, with Inaba supplanting Ogawa as the dominant serotype during the subsequent 4 years. We investigated the molecular basis of the serotype switch and confirmed that all Inaba strains had the same level of mRNA expression of the wbeT genes, as well as the same translation levels for the truncated WbeT proteins in the V. cholerae Inaba isolates. Neither wbeT gene expression levels, differential mutations, or truncation size of the WbeT proteins appeared to be responsible for the successful Inaba switch in 2015. Our phylodynamic analysis demonstrated that the V. cholerae Inaba strains in Haiti evolved directly from Ogawa strains and that a significant increase of diversifying selection at the population level occurred at the time of the Ogawa-Inaba switch. We conclude that the emergence of the Inaba serotype was driven by diversifying selection, independent of the mutational pattern in the wbeT gene. IMPORTANCE Our phylodynamic analysis demonstrated that Vibrio cholerae Inaba strains in Haiti evolved directly from Ogawa strains. Our results support the hypothesis that after an initial Ogawa-dominated epidemic wave, V. cholerae Inaba was able to become the dominant strain thanks to a selective advantage driven by ongoing diversifying selection, independently from the mutational pattern in the wbeT gene.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Sorogrupo , Cólera/epidemiologia , Haiti/epidemiologia , Sorotipagem
11.
Emerg Infect Dis ; 29(1): 149-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573719

RESUMO

Africa's Lake Tanganyika basin is a cholera hotspot. During 2001-2020, Vibrio cholerae O1 isolates obtained from the Democratic Republic of the Congo side of the lake belonged to 2 of the 5 clades of the AFR10 sublineage. One clade became predominant after acquiring a parC mutation that decreased susceptibility to ciprofloxacin.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Tanzânia , Lagos , Cólera/epidemiologia , Genômica
12.
Sci Rep ; 12(1): 19473, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376441

RESUMO

We examined the stools of 23 patients in Kolkata, who were diagnosed as cholera patients because Vibrio cholerae O1 was detected from their stools by culturing methods, and further explored by metagenomic sequencing analysis. Subsequently, the presence of the gene encoding A subunit of cholera toxin (ctxA) and the cholera toxin (CT) level in these stool samples were examined. ctxA was examined by both metagenomic sequencing analysis and polymerase chain reaction. In these examinations, two samples did not show positive in any of these tests. The metagenomic analysis showed that the genes for Streptococcus pneumoniae and Salmonella enterica were present in the stools of these two patients, respectively. Therefore, these two patients were not considered to have diarrhea due to V. cholerae infection. From these results, we predicted that some Kolkata residents harbor a small number of V. cholerae in their intestines as a form of subclinical infection with V. cholerae. Next, we analyzed the stool samples of 22 diarrhea patients from which V. cholerae was not isolated. The results showed that 3 of the patients seemed to have subclinical infection of V. cholerae based on the amount of the genes. These results indicated that subclinical infections with V. cholerae O1 occur in Kolkata.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Infecções Assintomáticas , Toxina da Cólera/genética , Cólera/diagnóstico , Cólera/epidemiologia , Diarreia/epidemiologia , Índia/epidemiologia
13.
J Appl Microbiol ; 133(6): 3605-3616, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000378

RESUMO

AIMS: The present study aimed to document the comparative analysis of differential hypervirulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS: A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analysed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel polymerase chain reaction was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that have caused Yemen cholera outbreak. All the strains from Western India belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, nonhemolytic, harboured VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both regions. CONCLUSIONS: This study showed hypervirulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and nonhemolytic traits that may spread and cause serious disease outcomes in future. SIGNIFICANCE AND IMPACT OF THE STUDY: The outcomes of this study can help to improve the understanding of the hyperpathogenic property of recently circulating pandemic Vibrio cholerae strains in India. Special attention is also needed for the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defence in the treatment of cholera.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Cólera/epidemiologia , Cólera/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polimixina B/farmacologia , Haiti , Farmacorresistência Bacteriana/genética , Índia/epidemiologia , Genótipo , Surtos de Doenças , Toxina da Cólera/genética , Toxina da Cólera/uso terapêutico
14.
PLoS Genet ; 18(8): e1010250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026491

RESUMO

The current circulating pandemic El Tor biotype of Vibrio cholerae has persisted for over sixty years and is characterized by its acquisition of two unique genomic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-I and VSP-II). However, the functions of most of the genes on VSP-I and VSP-II are unknown and the advantages realized by El Tor through these two islands are not clear. Recent studies have broadly implicated these two mobile genetic elements with phage defense. Still, protection against phage infection through these islands has not been observed directly in any V. cholerae El Tor biotype. Here we report the isolation of a circulating phage from a cholera patient stool sample and demonstrate that propagation of this phage in its native host is inhibited by elements in both VSP-I and VSP-II, providing direct evidence for the role of these genomic islands in phage defense. Moreover, we show that these defense systems are regulated by quorum sensing and active only at certain cell densities. Finally, we have isolated a naturally occurring phage variant that is resistant to the defense conferred by the VSP islands, illustrating the countermeasures used by phages to evade these defense mechanisms. Together, this work demonstrates a functional role for the VSPs in V. cholerae and highlights the key regulatory and mechanistic insights that can be gained by studying anti-phage systems in their native contexts.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae O1 , Bacteriófagos/genética , Cólera/epidemiologia , Cólera/genética , Ilhas Genômicas/genética , Humanos , Pandemias , Vibrio cholerae O1/genética
15.
Emerg Infect Dis ; 28(6): 1241-1245, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608654

RESUMO

After a lull of >20 years, Algeria experienced a cholera outbreak in 2018 that included 291 suspected cases. We found that outbreak isolates were Vibrio cholerae O1 serotype Ogawa from seventh pandemic El Tor sublineage AFR14, which corresponds to a new introduction of cholera into Africa from South Asia.


Assuntos
Cólera , Vibrio cholerae O1 , Argélia/epidemiologia , Cólera/epidemiologia , Surtos de Doenças , Humanos , Pandemias , Vibrio cholerae O1/genética
16.
Zhonghua Liu Xing Bing Xue Za Zhi ; 43(5): 734-738, 2022 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-35589581

RESUMO

Objective: To analyze the etiological and epidemiological characteristics of Vibrio cholerae in Beijing during 2015-2021 and provide evidence for the prevention and control of cholera. Methods: The V. cholerae strains isolated in Beijing during 2015-2021 were analyzed by serotyping and virulence genes detection. Pulsed field gel electrophoresis (PFGE) was performed for the molecular typing of the strains. Based on the collected epidemiological and clinical data of cholera cases,the epidemiological characteristics of cholera were analyzed by descriptive epidemiology method. Results: A total of 76 Vibrio cholerae O1 strains were isolated in Beijing during 2015-2021, including 61 strains from human, 10 strains from environment and 5 strains from seafood. The 76 strains consisted of 68 Ogawa strains and 8 Inaba strains. Six Ogawa strains isolated from sporadic cases carried ctxAB. After NotⅠ digestion, 76 strains were divided into 33 PFGE patterns. From 2015 to 2021, a total of 38 cholera epidemics were reported in Beijing, most of them were sporadic ones, accounting for 92.11% (35/38). A total of 45 cases were reported, and the cases occurred during June-September accounted for 97.78% (44/45). Cholera cases occurred in 9 districts of Beijing, and the cases reported in Chaoyang district accounted for 42.22% (19/45) and in Changping district accounted for 31.11% (14/45). The age of the cholera cases ranged from 19 to 63 years. Except for one case with unknown clinical symptoms, 44 cases had diarrhea symptoms with 84.09% (37/44) of the cases reporting diarrhea (3-9 times/day), followed by yellow watery stool (95.45%, 42/44), abdominal pain (68.18%, 30/44), nausea and vomiting (40.91%, 18/44) and fever (36.36%, 16/44). Conclusion: Vibrio cholerae strains isolated in Beijing during 2015-2021 were mainly O1 serotype Ogawa,most of which were non-toxigenic. The PFGE of the strains varied. Cholera epidemics occurred in 9 districts of Beijing, but most were sporadic ones with incidence peak during June-September.


Assuntos
Cólera , Vibrio cholerae O1 , Adulto , Pequim/epidemiologia , Cólera/tratamento farmacológico , Cólera/epidemiologia , Diarreia/epidemiologia , Eletroforese em Gel de Campo Pulsado , Humanos , Pessoa de Meia-Idade , Vibrio cholerae O1/genética , Adulto Jovem
17.
Front Cell Infect Microbiol ; 12: 863435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433512

RESUMO

There is a growing demand for rapid, sensitive, field-deployable nucleic acid tests for cholera, which usually occurs in rural areas. In this study, we developed a Cas12a-assisted rapid isothermal detection (CARID) system for the detection of toxigenic V. cholerae serogroups O1 and O139 by combining recombinase-aided amplification and CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins). The results can be determined by fluorescence signal and visualized by lateral flow dipstick. We identified 154 V. cholerae strains and 129 strains of other intestinal diarrheagenic bacteria with a 100% coincidence rate. The limit of detection of CARID was 20 copies/reaction of V. cholerae genomic DNA, which is comparable to that of polymerase chain reaction (PCR) and qPCR. Multiple-CARID was also established for efficiency and economic considerations with an acceptable decrease in sensitivity. Simulated sample tests showed that CARID is suitable for complex samples. In conclusion, CARID is a rapid, sensitive, economically efficient, and portable method for the detection of V. cholerae, which makes it suitable for field responses to cholera.


Assuntos
Cólera , Vibrio cholerae O1 , Cólera/diagnóstico , Cólera/microbiologia , Toxina da Cólera , Humanos , Sorogrupo , Sorotipagem , Vibrio cholerae O1/genética
18.
Antimicrob Resist Infect Control ; 11(1): 62, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468830

RESUMO

BACKGROUND: Vibrio cholerae O1/O139 were the predominant circulating serogroups exhibiting multi-drug resistance (MDR) during the cholera outbreak which led to cholera treatment failures. OBJECTIVE: This meta-analysis aimed to evaluate the weighted pooled resistance (WPR) rates in V. cholerae O1/O139 isolates obtained from environmental samples. METHODS: We systematically searched the articles in PubMed, Scopus, and Embase (until January 2020). Subgroup analyses were then employed by publication year, geographic areas, and the quality of studies. Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS: A total of 20 studies investigating 648 environmental V. cholerae O1/O139 isolates were analysed. The majority of the studies were originated from Asia (n = 9). In addition, a large number of studies (n = 15 i.e. 71.4%) included in the meta-analysis revealed the resistance to cotrimoxazole and ciprofloxacin. The WPR rates were as follows: cotrimoxazole 59%, erythromycin 28%, tetracycline 14%, doxycycline 5%, and ciprofloxacin 0%. There was increased resistance to nalidixic acid, cotrimoxazole, furazolidone, and tetracycline while a decreased resistance to amoxicillin, ciprofloxacin, erythromycin, chloramphenicol, ampicillin, streptomycin, and ceftriaxone was observed during the years 2000-2020. A significant decrease in the doxycycline and ciprofloxacin-resistance rates in V. cholerae O1/O139 isolates was reported over the years 2011-2020 which represents a decrease in 2001-2010 (p < 0.05). CONCLUSIONS: Fluoroquinolones, gentamicin, ceftriaxone, doxycycline, kanamycin, and cefotaxime showed the highest effectiveness and the lowest resistance rate. However, the main interest is the rise of antimicrobial resistance in V. cholerae strains especially in low-income countries or endemic areas, and therefore, continuous surveillance, careful appropriate AST, and limitation on improper antibiotic usage are crucial.


Assuntos
Cólera , Vibrio cholerae O139 , Vibrio cholerae O1 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Cólera/tratamento farmacológico , Cólera/epidemiologia , Ciprofloxacina , Doxiciclina , Farmacorresistência Bacteriana , Eritromicina , Humanos , Testes de Sensibilidade Microbiana , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Vibrio cholerae O1/genética
19.
FEMS Microbiol Lett ; 369(1)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35438174

RESUMO

A complex virulence-regulatory cascade controls expression of the cholera toxin genes (ctxAB) in Vibrio cholerae, which eventually leads to the production and secretion of choleragen (CT), responsible for rice watery diarrhoea in infected individuals. The cholera toxin promoter (PctxAB) contains a series of heptad repeats (5'-TTTTGAT-3'), which has previously been shown to play a crucial role in transcriptional regulation of ctxAB by recruiting the transcriptional activators ToxT, ToxR and the nucleoid-associated protein H-NS along the ctx promoter. The number of these repeats differs not only between the two biotypes of V. cholerae O1 strains, but also among the strains belonging to the same biotype. In this study, we examined if regulation of PctxAB is influenced in any way by the number of these repeats. Based on our observations, we posit that ctx activation indeed depends on the number of TTTTGAT heptad repeats within PctxAB, and occupation of the distal repeats by H-NS could prevent transcriptional activation of the ctx genes in V. cholerae O1 pandemic isolates. Our results suggest that ToxT-dependent transcriptional activation may not require entire displacement of H-NS and supports a recently described revised model of ToxT and H-NS mediated PctxAB transcriptional regulation.


Assuntos
Toxina da Cólera , Regiões Promotoras Genéticas , Vibrio cholerae O1 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Vibrio cholerae O1/genética
20.
Microbiol Spectr ; 10(2): e0039122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35315699

RESUMO

Comparative genomic analysis of Vibrio cholerae El Tor associated with endemic cholera in Asia revealed two distinct lineages, one dominant in Bangladesh and the other in India. An in-depth whole-genome study of V. cholerae El Tor strains isolated during endemic cholera in Bangladesh (1991 to 2017) included reference genome sequence data obtained online. Core genome phylogeny established using single nucleotide polymorphisms (SNPs) showed V. cholerae El Tor strains comprised two lineages, BD-1 and BD-2, which, according to Bayesian phylodynamic analysis, originated from paraphyletic group BD-0 around 1981. BD-1 and BD-2 lineages overlapped temporally but were negatively associated as causative agents of cholera during 2004 to 2017. Genome-wide association study (GWAS) revealed 140 SNPs and 31 indels, resulting in gene alleles unique to BD-1 and BD-2. Regression analysis of root to tip distance and year of isolation indicated early BD-0 strains at the base, whereas BD-1 and BD-2 subsequently emerged and progressed by accumulating SNPs. Pangenome analysis provided evidence of gene acquisition by both BD-1 and BD-2, of which six crucial proteins of known function were predominant in BD-2. BD-1 and BD-2 diverged and have distinctively different genomic traits, namely, heterogeneity in VSP-2, VPI-1, mobile elements, toxin encoding elements, and total gene abundance. In addition, the observed phage-inducible chromosomal island-like element (PLE1), and SXT ICE elements (ICETET) in BD-2 presumably provided a fitness advantage for the lineage to outcompete BD-1 as the etiological agent of endemic cholera in Bangladesh, with implications for global cholera epidemiology. IMPORTANCE Cholera is a global disease with specific reference to the Bay of Bengal Ganges Delta where Vibrio cholerae O1 El Tor, the causative agent of the disease showed two circulating lineages, one dominant in Bangladesh and the other in India. Results of an in-depth genomic study of V. cholerae associated with endemic cholera during the past 27 years (1991 to 2017) indicate emergence and succession of the two lineages, BD-1 and BD-2, arising from a common ancestral paraphyletic group, BD-0, comprising the early strains and short-term evolution of the bacterium in Bangladesh. Among the two V. cholerae lineages, BD-2 supersedes BD-1 and is predominant in the most recent endemic cholera in Bangladesh. The BD-2 lineage contained significantly more SNPs and indels, and showed richness in gene abundance, including antimicrobial resistance genes, gene cassettes, and PLE to fight against bacteriophage infection, acquired over time. These findings have important epidemic implications on a global scale.


Assuntos
Cólera , Vibrio cholerae O1 , Bangladesh/epidemiologia , Teorema de Bayes , Cólera/epidemiologia , Cólera/microbiologia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Vibrio cholerae O1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA